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Min-entropy as a resource for one-shot private state transfer, quantum masking, and state transition
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We give an operational meaning to the min-entropy of a quantum state as a resource measure for various
interconnected tasks. In particular, we show that the min-entropy without smoothing measures the amount of
quantum information that can be hidden or encoded perfectly in the one-shot setting when the quantum state
is used as a randomness or correlation source. First, we show that the min-entropy of entanglement of a pure
bipartite state is the maximum number of qubits privately transferable when the state is used as a quantum
one-time pad. Then, through the equivalence of quantum secret sharing–like protocols, it is also shown that the
min-entropy of a quantum state is the maximum number of qubits that can be masked when the state is used as a
randomness source for a quantum masking process. Consequently, we show that the min-entropy of a quantum
state is half the size of the quantum state it can catalytically dephase. This gives a necessary and sufficient
condition for catalysts for state transition processes.
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I. INTRODUCTION

The space of quantum correlation is vast. The dimension
of a collection of many quantum systems is much larger than
the sum of the dimension of each system. This concept has
motivated research on the method of encoding information
within a global quantum state without altering local quantum
systems. Such efforts have appeared under many names: quan-
tum error correcting codes [1,2], quantum secret sharing [3,4],
quantum masking [5–7], and private state transfer [8,9].

Among these tasks, quantum secret sharing (QSS) [4] is
especially important since, as we will see, it subsumes many
other similar tasks. Quantum secret sharing is the task of
distributing an arbitrary quantum state to multiple parties in a
fashion by which only authorized subsets of them can restore
the quantum state. Each local party’s marginal state (share)
of a QSS scheme should have a constant form regardless of
the quantum secret. Typically each share of a QSS scheme is
a quantum state that should be stored in a quantum system.
However, it is still demanding to maintain a large quantum
system protected from noise and error. Thus, estimating and
optimizing the informational size of the each share is critical,
since it is directly related to the required physical size of the
storage medium to contain each share.

The informational size of a quantum system is decided by
how random the system is. There have been studies on lower
bounds of the amount of randomness of each share in a QSS
scheme. The Rényi entropy [10], defined as

Sα (ρ) ≡ 1

1 − α
log2 Tr[ρα], (1)

and its limits, i.e., the max-entropy Smax(ρ) ≡ log2 rank(ρ) =
limα→0 Sα (ρ), the min-entropy Smin(ρ) ≡ − log2 ‖ρ‖ =
limα→∞ Sα (ρ) (here ‖ρ‖ is the operator norm of ρ which
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is the largest singular value of ρ), and the von Neumann
entropy S(ρ) ≡ −Tr[ρ log2 ρ] = limα→1 Sα (ρ) [11], are
often used to quantify the randomness within a quantum
state ρ. In Ref. [3] it was proven that, for an arbitrary secret
sharing scheme for a d-dimensional quantum secret, the
dimension of each share of secret must be at least as large
as the dimension of the secret itself. This provides a lower
bound for the max-entropy of each share denoted by σ , i.e.,
Smax(σ ) � log2 d . In Refs. [12,13] the result was improved
to provide a lower bound of the von Neumann entropy of
each share, i.e., S(σ ) � log2 d . Note that the Rényi entropy
monotonically decreases as α grows [14].

The problem, however, was not closed, since the optimal-
ity of the lower bound was not proved. Can any quantum
state with the von Neumann entanglement entropy larger than
log2 d be a marginal state of a QSS scheme? If not, when is it
possible?

In this work we show that these questions are intimately
related to other questions about the amount of required
resources for many other important quantum information
processing tasks. We then close this problem by giving the
min-entropy of a quantum state operational meanings as the
power for tasks such as private state transfer, quantum mask-
ing, and implementation of a dephasing map.

For example, for the quantum masking [5,13,15], the task
of hiding quantum information in a bipartite quantum corre-
lation using a randomness source and bipartite interaction,
the amount quantum information that can be masked by a
randomness source is given by its min-entropy. For the private
state transfer [8], the task of transmitting a quantum state
without giving any information to a potential eavesdropper
by utilizing preestablished quantum correlation, the amount
of privately transferable quantum information is determined
by the min-entropy of the marginal state of the preestablished
pure bipartite state. In doing so, we introduce a determinis-
tic method of randomness extraction from a weak quantum
randomness source, i.e., a mixed state with high enough
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min-entropy but having nonuniform eigenvalues, utilizing the
Nielsen theorem [16].

These results imply an important consequence for state
transition processes under the constraint that randomness
is not free, which is deeply related to quantum thermody-
namics [17,18]. We completely characterize the randomness
sources that can dephase a given size of quantum system. As
a direct consequence, we derive a necessary and sufficient
criterion for the possibility of a state transition process with
a given catalyst [19].

Our paper is organized as follows. In Sec. II the defini-
tions of QSS-like tasks, private state transfer, and quantum
masking are given and their equivalence is shown. Readers
who are not familiar with QSS schemes could refer to this
section. In Sec. III we prove that the minimal min-entropy
of entanglement of a one-time pad for privately transferring a
d-dimensional quantum state is log2 d . In Sec. IV, through the
equivalence with private state transfer established in Sec. II,
we prove that the minimal min-entropy of a randomness
source for masking a d-dimensional quantum state is also
log2 d . In Sec. V we introduce dephasing processes with left-
over randomness and show that log2 d bits of randomness are
required for a catalytic transition between two d2-dimensional
quantum states in a majorization relation. In Sec. VI we sum-
marize the results of our paper and discuss possible future
work.

II. EQUIVALENCE OF QSS-LIKE TASKS

A QSS scheme is a quantum process that encodes a quan-
tum state into a multipartite state such that only authorized
subsets of the participants can restore the encoded state. An
important type of QSS scheme is the ((k, n))-threshold QSS
scheme, which is a process that encodes an arbitrary quantum
state into an n-partite quantum state such that only subset of
n parties with size larger than k − 1 can restore the encoded
secret quantum state.

We will denote the Hilbert space corresponding to quan-
tum system A by HA and the vector space of operators on
the Hilbert space HA by B(HA). We will also follow the
convention of denoting the marginal state on system A of a
multipartite state |�〉ABC... by �A throughout this work. In
the following definition, families of quantum channels defined
on B(HA) with the form {Eψ } will be considered, where the
index ψ can be an arbitrary d-dimensional quantum state.
Technically, the ((k, n))-threshold QSS scheme can be defined
as follows.

Definition 1 (quantum secret sharing). A ((k, n))-threshold
QSS scheme is a quantum channel Q : B(H) → ⊗

i∈P B(Hi)
with |P| = n such that for all F ⊆ P with |F | < k, TrP\F ◦
Q is a constant channel and for any A ⊆ P with |A| � k
there exists a quantum channel RA such that RA ◦ TrP\A ◦
Q(ρ) = ρ.

It was proven that [3,4] only the schemes with n/2 < k � n
are allowed by the no-cloning theorem and that secret sharing
through pure n-partite state is possible only for ((k, 2k −
1))-threshold QSS schemes. In particular, the impossibil-
ity of pure ((2,2))-threshold QSS schemes (named masking
quantum information or quantum masking) was recently
rediscovered under the name of the no-masking theorem [5].

Subsequently, two approaches to circumvent the no-masking
theorem have emerged. One is to keep the pureness of the
output state and to restrict the set of quantum states to be
“masked” (meaning hidden from two local parties) [7,20].
Another is to give up the pureness while keeping the uni-
versality, the property of being able to mask any quantum
state, by employing the source of randomness [13,15], which
is required for any reversible mixed process by the result
of Nayak and Sen [21]. When it is necessary to distinguish
them, we will call the former schemes unitary masking pro-
cesses and the latter randomized masking processes. Note that
randomized masking is different from probabilistic masking,
which was recently proved to be impossible as well [6]. A
randomized masking process is an invertible quantum process
and therefore should have a form of isometry by the result
of Ref. [21]; we establish it as a technical definition of the
randomized masking process.

Definition 2 (quantum masking). A randomized mask-
ing process T : B(HA) → B(HA ⊗ HB) is a ((2,2))-threshold
QSS scheme with the form for any input state ρ,

T (ρ) = V (ρ ⊗ ζ )V †, (2)

with a unitary operator V on HA ⊗ HB and some mixed state
ζ , where both partial traces TrA ◦ T and TrB ◦ T are constant
quantum maps.

In other words, Definition 2 requires both TrAT (ρ) and
TrBT (ρ) to be constant for every input state ρ. Here ζ acts as
a source of randomness and will be called the safe state of the
masking process [13]. It is called a safe state in the sense that
quantum information is securely masked as if it is being stored
safely in a virtual safe. The masking process masks quantum
information since both local parties cannot access the masked
quantum state. Since our focus in this work is on universal
processes, when we refer to masking processes without spec-
ification, it will be the randomized masking processes.

Next we give the definition of encoding schemes for faith-
ful one-shot private state transfer (PST). Consider a situation
in which two parties, Alice and Bob, have a predistributed
entangled state |�〉AB. Alice encodes her possibly unknown
quantum state ψ by making ψ interact with her part of |�〉AB.
This results in the secret encoding channel �ψ acting on the
system A of |�〉AB. Then Alice transmits system A to Bob over
a quantum channel. However, to make the secret remain pri-
vate, any possible eavesdropper seizing the transmitted state
�ψ (TrB|�〉〈�|AB) should gain no information at all about the
state ψ . To finish the transmission, there also should be a
recovery map that can recover ψ from (�ψ ⊗ I )(|�〉〈�|AB).
We will focus on the case where this recovery map exactly
recovers the secret state, in contrast to approximate recovery.
Now we give the technical description of this task.

Definition 3 (private state transfer). A family of quan-
tum channels {�ψ } is said to encode quantum state ψ into
a bipartite state |�〉AB for d-dimensional faithful one-shot
PST if �ψ (�A) is constant regardless of ψ and there exists
a unitary operator M on HA ⊗ HB such that TrB(M†(�ψ ⊗
IB)(|�〉〈�|AB)M ) = ψ .

We say that |�〉AB given above is used as a quan-
tum one-time pad for faithful one-shot private transfer of
a d-dimensional quantum state. We will drop the modifiers
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“faithful” and “one-shot” in the following unless they are
necessary.

By definition, both marginal states of the output bipartite
state of a PST process should be independent of the input
state. Therefore, every PST process stopped before actual
transmission is a ((2,2))-threshold QSS process.

The equivalence of quantum masking and PST is evident
from the fact that both are simply two different expressions
of general ((2,2))-threshold QSS schemes, but it can also be
shown explicitly.

Lemma 1. Private state transfer and quantum masking are
equivalent.

Proof. We first note that every extension of a mixed state
can be obtained by applying a quantum channel to the purify-
ing system of a purification of the mixed state. For example,
let τA be a quantum state and τAB be an extension of it. A
purification of an extension is also a purification of the mixed
state, which can be verified by applying the partial trace of the
former to obtain the original mixed state. It is also known that
every purification of a quantum state is unitarily similar when
applied on the purifying system. Therefore, for a purification
of τA, τAE , and a purification of τAB, τABC , which is also a
purification τA, there exists a unitary operator WE→BC such
that WE→BCτAEW †

E→BC = τABC . By taking the partial trace, we
get τAB = TrC[WE→BCτAEW †

E→BC]. Since applying the unitary
operator and taking the partial trace is a quantum channel, we
obtain the desired result.

We follow the notation and assumptions of Definitions 2
and 3. We can extend a family of quantum channels {�ψ } for
an arbitrary operator from linearity, i.e., �aψ+bφ := a�ψ +
b�φ . Then, if {�ψ } is a family of linear maps such that
TrB[M†(�ψ ⊗ IB)(|�〉〈�|AB)M] = ψ for all ψ , the chan-
nel C defined as C(ρ) = TrB[M†(�ρ ⊗ IB)(|�〉〈�|AB)M] is
the identity channel as it preserves every input state. There-
fore, for a maximally entangled state |�〉RA = d−1/2 ∑

i |ii〉RA,
(IR ⊗ C)(|�〉〈�|RA) = |�〉〈�|RA. Since it is a pure state,
every purification of this state should be in a prod-
uct state. Therefore, an extension of (IR ⊗ C)(|�〉〈�|RA),
1
d

∑
i j |i〉〈 j|R ⊗ M†(�|i〉〈 j| ⊗ IB)(|�〉〈�|AB)M, can be ob-

tained by applying a quantum channel to the purifying
systems uncorrelated with RA. Since an uncorrelated system
cannot become correlated after applying a local operation,
we get that 1

d

∑
i j |i〉〈 j|R ⊗ M†(�|i〉〈 j| ⊗ IB)(|�〉〈�|AB)M =

|�〉〈�|RA ⊗ ζ for some quantum state ζ . By the Choi-
Jamiołkowski isomorphism [22,23], we get M†(�ψ ⊗
IB)(|�〉〈�|AB)M = ψ ⊗ ζ for an arbitrary quantum state ψ .
Therefore, it follows that (�ψ ⊗ IB)(|�〉〈�|AB) = M(ψ ⊗
ζ )M†, where both partial traces of the right-hand side are
constant quantum maps for ψ by Definition 3. Hence every
PST is a quantum masking process.

Conversely, consider a quantum masking process T (ρ) =
V (ρ ⊗ ζ )V † that has constant marginal state �B ≡ TrAT . We
consider a purification |�〉AB of �B. Since every extension of
a mixed state can be made by applying a quantum channel to
its purifying system of the state’s purification, for every input
state ρ there exists a corresponding quantum map �ρ acting
on A such that (�ρ ⊗ IB)(|�〉〈�|AB) = T (ρ). It follows that
TrA(�ρ ⊗ IB)(|�〉〈�|AB) = �B is a constant state regardless
of ρ and that TrBV †(�ρ ⊗ IB)(|�〉〈�|AB)V = TrB(ρ ⊗ ζ ) =

ρ. Therefore, {�ρ} is a family of quantum channels that satis-
fies Definition 3. �

Lemma 1 only proves that the input-output relations of PST
and quantum masking are equivalent and the two tasks are still
different in terms of the physical implementation method. Pri-
vate state transfer requires a predistributed entangled state, but
encoding itself can be executed locally; in contrast, quantum
masking requires no entangled state but should be imple-
mented with global interaction of two quantum systems.

The equivalence of the lower bounds of measures for the
randomness source of quantum masking and a quantum one-
time pad of PST can be explicitly shown in the following way.
It is known that any purification of the ((2,2))-threshold QSS
scheme is a ((2,3))-threshold QSS scheme [4]. It follows from
the no-hiding theorem [24], which states that if a quantum
state is completely erased from a system it can be recovered
unitarily from its purifying system. From the no-hiding the-
orem, any two of the three elements, i.e., participants A and
B of the ((2,2))-threshold QSS scheme and their purifying
environment E , can restore the encoded state since any of A
and B has no information at all about the encoded state. The
purifying environment E also has no information about the
state since it has never interacted with the encoder. This indi-
cates that a purification of the ((2,2))-threshold QSS scheme
is a ((2,3))-threshold QSS scheme. Also, by discarding any
one share of a ((2,3))-threshold QSS scheme one obtains a
((2,2))-threshold QSS scheme. This follows immediately from
the definition of the threshold QSS scheme since discarding
grants no additional information to individual participants, but
two participants can still collectively restore the encoded state
as there are two of them remaining.

A purification of the arbitrary masking process T (ρ) given
in Eq. (2) can be obtained by purifying the safe state ζ , i.e.,

(VAB ⊗ 1C )(ρA ⊗ |Z〉〈Z|BC )(V †
AB ⊗ 1C ), (3)

where |Z〉BC is a purification of the mixed state ζ . Since this is
a ((2,3))-threshold QSS scheme, by tracing out system A, one
gets another ((2,2))-threshold QSS scheme of the form

(�ρ ⊗ IC )(|Z〉〈Z|BC ), (4)

with �ρ (σ ) ≡ TrA[V (ρ ⊗ σ )V †] defined for every quantum
state ρ, which exactly fits the definition of PST. One can easily
check that a similar argument holds for the converse case.
Therefore, the Rényi entanglement entropy of the quantum
one-time pad |Z〉 is the same as the Rényi entropy of the safe
state ζ . Thus, by lower bounding the former, one can also
lower bound the latter.

III. PRIVATE STATE TRANSFER

In this section, we give a necessary and sufficient condition
that a pure bipartite quantum state |�〉AB should satisfy in
order to be used for PST. For this purpose, we use the result
of Nielsen’s theorem [16], stated in the following form [25].
Here, that the quantum state ρ majorizes another quantum
state σ means that the spectrum of ρ majorizes that of σ ,
i.e.,

∑k
i=1 λi(ρ) � ∑k

i=1 λi(σ ) for all k where λi(ρ) is the ith
largest eigenvalue of ρ.

Lemma 2 (Nielsen theorem). For two pure bipartite states
|�〉AB and |�〉AB such that �A is majorized by �A, there
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exists a one-way local operation and classical communication
(LOCC) superoperator  on B(HA ⊗ HB) given in the form

(ω) =
∑

i

(Ki ⊗ Ui )ω(K†
i ⊗ U †

i ), (5)

where {Ki} forms the set of Kraus operators, i.e.,
∑

i K†
i Ki =

1A, and Ui are unitary operators acting on HB such that
(|�〉〈�|AB) = |�〉〈�|AB.

Theorem 1. A bipartite state |�〉AB can be used as a
quantum one-time pad for faithful private transfer of a d-
dimensional quantum state if and only if Smin(�A) � log2 d .

Proof. Suppose that Smin(�A) � log2 d . This is
equivalent to the spectrum of �A being majorized by
(1/d, . . . , 1/d, 0, . . . ). If |�〉AB is a maximally entangled
state on some d-dimensional subspaces of HA and HB,
by Nielsen’s theorem, there exists a one-way LOCC
superoperator  on B(HA ⊗ HB) given (5) such that
(|�〉〈�|AB) = |�〉〈�|AB. We modify this superoperator
so that the classical communication from Alice to Bob is sus-
pended and stored in a data storage of Alice, i.e., we extend the
superoperator  to ̃ : B(HA ⊗ HB) → B(HA ⊗ HB ⊗ Cm)
for some m (we will refer to the system Cm as C) given as

̃(ω) =
∑

i

(Ki ⊗ Ui )ω(K†
i ⊗ U †

i ) ⊗ |i〉〈i| (6)

and similarly define � : B(HA) → B(HA ⊗ Cm) as

�(ω) =
∑

i

KiωK†
i ⊗ |i〉〈i|. (7)

Note that (|�〉〈�|AB) = TrC ◦ ̃(|�〉〈�|AB) = |�〉〈�|AB

and |�〉〈�|AB is a pure state; therefore, ̃(|�〉〈�|AB) should
have the form of |�〉〈�|AB ⊗ σC , with some σ , i.e., other
systems should be decoupled from a system in a pure state.
Then we can see that �(�A) = �A ⊗ σC for some mixed state
σ because �(�A) = TrB ◦ ̃(|�〉〈�|AB).

Since �A is a quantum state with uniform nonzero
eigenvalues 1/d , there exists [13,15] a family of secret en-
coding maps {�ψ } of d-dimensional quantum states such that
�ψ (�A) is constant for all ψ . If we let {(�ψ ⊗ IC ) ◦ �} be
the family of secret encoding maps acting on A of |�〉AB,
we get the wanted result. The secret can be restored by first
applying Ui on B conditioned on C followed by discarding the
system C and applying the restoring map for {�ψ } on AB. The
first step transforms |�〉AB to |�〉AB, which is the legitimate
safe-key state [13,15] of {�ψ } so that the second step works.

Conversely, suppose that there exists a family of secret
encoding maps {�ψ } of d-dimensional quantum states acting
on A of |�〉AB. It is equivalent to there existing a quantum
masking process that uses �A as the safe state [13]. Therefore,
according to Eq. (9) of Ref. [15], every eigenvalue pi of
�A must not be larger than 1/d .1 Since it is equivalent to
Smin(�A) � log2 d , the wanted result is obtained. �

This result generalizes the result of Ref. [26] that if
Smin(�A) � log2 d , then |�〉AB can be used for faithfully tele-
porting a d-dimensional quantum state, since the quantum

1Since I (R : A)τRA + I (R : B)τRB = 2 log d and max{I (R :
A)τRA , I (R : B)τRB } � − log pi, we get log d � − log pi for
all i.

teleportation is a special case of PST. Note that any eavesdrop-
per of the classical communication in a teleportation protocol
without sharing initial entanglement cannot gain any informa-
tion of the teleported quantum state. Also, Theorem 1 shows
that the faithful teleportation protocol given in Ref. [26] is
not only an optimal teleportation protocol, but also an op-
timal PST protocol in the sense that the protocol consumes
the minimal amount of entangled state without any leftover
entanglement and does not require a quantum channel be-
tween Alice and Bob for the secret recovery. Nonetheless,
note that teleportation is not the only possible PST scheme.
From Lemma 1 it follows that any output state of a quantum
masking process is also an output state of a PST. However,
the output state of a teleportation (as a PST process) is a
classical quantum state, but since there are quantum masking
processes with entangled outputs [13], it follows that there are
nonteleportation PST schemes too.

If we define the one-shot PST power of |�〉AB as the maxi-
mal size of the transferable quantum state by using state |�〉AB

counted in qubits as Pp(|�〉AB) ≡ log2�2Smin (�A ), we have the
following result.

Corollary 1. The one-shot PST power for bipartite states is
superadditive, i.e., Pp(|�〉 ⊗ |�〉) � Pp(|�〉) + Pp(|�〉).

IV. QUANTUM MASKING

From the equivalence and duality of quantum masking and
PST, we can similarly define the masking power of a quantum
state σ as Pm(σ ) ≡ �2Smin (σ ). We will say that a quantum state
σ can mask d-dimensional quantum information when it is
used as the safe state of a d-dimensional randomized quantum
masking process. The main result implies the following.

Corollary 2. A quantum state σ can mask d-dimensional
quantum information if and only if Smin(σ ) � log2 d. More-
over, the masking power quantum state is superadditive, i.e.,
Pm(σ1 ⊗ σ2) � Pm(σ1) + Pm(σ2).

Note that, by appropriately merging unauthorized sets of
an arbitrary ((k, n))-threshold QSS scheme, one can construct
a ((2,2))-threshold scheme [13,15], i.e., quantum masking.
Therefore, Corollary 2 applies to an arbitrary unauthorized
set of d-dimensional QSSs; i.e., any unauthorized party’s
marginal state should have min-entropy larger than or equal
to log2 d .

This result implies that having large von Neumann en-
tropy alone is not enough for masking quantum information.
For example, a rank-3 quantum state with the spectrum of
(0.7730,0.1135,0.1135) has 1 bit of von Neumann entropy,
but since its min-entropy is 0.3716 bits, it cannot mask a
qubit of quantum information. On the other hand, a state with
the spectrum of (1/2, 1/4, 1/8, . . . , 1/2n, 1/2n) which has 1
bit of min-entropy can mask a qubit of quantum information
even though its randomness is highly nonuniform. The conse-
quences of Theorem 1 is not limited to quantum information
processing tasks but also has implications for the field of state
transition.

V. STATE TRANSITION

For any initial state ρ and final state ρ ′, implementation
of a quantum channel (transition) E such that E (ρ) = ρ ′ by
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utilizing randomness has been studied [17,19,27]. Every state
transition process can be realized if a dephasing map can be
realized [19,27] due to the Schur-Horn theorem [28], since
every state transition between two states with a majorization
relation can be decomposed into the initial unitary evolution
followed by a dephasing map and the final unitary evolution.

Lemma 3 (Schur-Horn theorem). A probability distribution
(pi ) ∈ Rn majorizes another distribution (qi ) ∈ Rn if and only
if there exists an n × n unitary matrix U = (Ui j ) such that
qi = ∑

j |Ui j |2 p j .
Therefore, realizing dephasing maps is the essential part

of implementing a state transition. The necessary and suffi-
cient condition for the source of randomness (SOR) of the
dephasing channel can also be obtained from Theorem 1. Here
we will use a slightly different definition of the (catalytic)
dephasing map using quantum randomness to encompass the
usage of an imperfect SOR [29]. We will say the map E
dephases with respect to a certain basis {|i〉} using a SOR σ

with a leftover SOR η if there exists an isometry operator (a
unitary operator that embeds a smaller Hilbert space into a
larger one) U acting on AB such that for any d-dimensional
quantum state ρ,

E (ρ) = TrB[U (ρ ⊗ σ )U †] =
∑

i

〈i|ρ|i〉|i〉〈i| ⊗ η, (8)

and there exists some quantum state τ on B so that the com-
plement channel of E has the form

Ẽ (ρ) = TrA[U (ρ ⊗ σ )U †] = τ, (9)

regardless of ρ. We will say the use of a SOR σ is catalytic
when τ can also be used for some d-dimensional dephasing
map with the same property, i.e., it is an infinitely recyclable
SOR. One can see that this definition is recursive. We will also
say that σ (catalytically) dephases d-dimensional quantum
states for the same situation. The leftover SOR η does not
cause problems since it can always be stored or discarded
independently of the dephasing process itself, since it is in
a product state with the dephased state of the input ρ. If the
second requirement is not imposed, then SOR is not needed at
all since a simple controlled-NOT gate can dephase with a pure
ancillary system. (See Ref. [29] for a more detailed discussion
on this generalized setting.)

In Ref. [19], only maximally mixed SORs were consid-
ered when the minimal randomness bound was derived and
only approximate dephasing was considered for potentially
nonuniform SORs, but since it is well known that nonuniform
randomness sources can cause security issues [30,31], it is
necessary to analyze the power of nonuniform SORs. In the
following theorem, we give a necessary and sufficient condi-
tion of when a SOR can be used to exactly dephase an arbitrary
input state.

Theorem 2. A quantum state σ can dephase d2-dimensional
quantum states catalytically if and only if Smin(σ ) � log2 d .

Proof. Suppose that σ can dephase d2-dimensional quan-
tum states. Then, by using two copies of σ , i.e., σ ⊗
σ , one can mask any d2-dimensional quantum state ρ by
dephasing it into two mutually unbiased bases. For ex-
ample, one can use one σ to dephase ρ and apply the
(d2-dimensional) discrete Fourier transform gate [defined as

∑d2

n,m=1 exp(i2πnm/d2)|n〉〈m|] to the output. Then, by using
the other σ , one can dephase the output state with respect to
the same basis. The final output state is the d2-dimensional
maximally mixed state for every input state ρ (with some
leftover SOR in a product state). Since the SOR σ ⊗ σ is also
transformed into a quantum state that is independent of ρ, the
whole process is a randomized masking process. Therefore,
by Corollary 2, Smin(σ ⊗ σ ) � 2 log2 d . By the additivity of
the min-entropy, we get Smin(σ ) � log2 d .

Conversely, assume that Smin(σ ) � log2 d . If we pick a
purification |�〉 of σ , then one can replace |�〉 in the proof
of Theorem 1 with |�〉 since it majorizes a d-dimensional
maximally entangled state |�〉. Therefore, we will use the
corresponding Kraus operators {Ki} defined in the same way
as in Eq. (6). Then we apply the isometry operator

∑
i |i〉A′ ⊗

|i〉B′ ⊗ Ki (A′ and B′ belong to Alice and Bob, respectively, and
Ki acts on B, the same system as that of σ ) to σ . Then, for both
Alice and Bob, who have no access to B′ and A′, respectively,
system B is uncorrelated to their primed systems (A′ and B′)
and system B is in the rank-d uniformly mixed state �B. (See
the proof of Theorem 1.)

Then, by applying the optimal d2-dimensional dephasing
unitary operator given in Ref. [19], which uses state �B as a
catalyst and applies the unitary operator

∑
i |i〉〈i|A ⊗ Ui to AB,

where {Ui}d2

i=1 is an arbitrary set of orthonormal unitary oper-
ators, i.e., Tr[UiU

†
j ] = δi jd , we can realize a d2-dimensional

dephasing map with the leftover SOR κ ≡ ∑
i Tr[KiσK†

i ]|i〉〈i|
and the SOR used in this process is transformed into �B ⊗ κB′ .
Since Smin(�B ⊗ κB′ ) � Smin(�B) = log2 d , this SOR can be
used again for another d2-dimensional dephasing map; there-
fore, σ was used catalytically in this process. �

The catalyst used in this process has transformed from σ to
�B ⊗ κB′ . We remark however that the catalyst’s min-entropy
never decreases during the process. This follows from, for all
i,

2−Smin (�B⊗κB′ ) = max
i

1

d
Tr[KiσK†

i ] � 2−Smin (σ ), (10)

where the first equality follows from 2−Smin (�B⊗κB′ ) being
the largest eigenvalue of �B ⊗ κB′ and the second inequal-
ity follows from σ � 2−Smin (σ )1 and K†

i Ki � �supp(Ki ), where
�supp(Ki ) is the orthogonal projector onto the support of Ki (the
orthogonal complement of the kernel of Ki) and Tr�supp(Ki ) =
d . Thus no consumption of randomness in terms of min-
entropy happens in the process.

One can even recover full catalycity, if decoherence is
allowed, by applying the controlled unitary to �B ⊗ κB′ given
as

∑
i U †

i ⊗ |i〉〈i| with the unitary operators {Ui} of the proof
of Theorem 1 and discarding the latter system. This is because∑

i Tr[KiσK†
i ]U †

i �BUi = σ . Therefore, as it was assumed
in [32], if κB′ undergoes decoherence and is dephased with
respect to a basis unbiased from its eigenbasis, we can see
that the catalyst returns to its original form σ with some
uncorrelated leftover SOR, the state κ after being dephased.

On the other hand, if one wants to remove the leftover
SOR κ completely to follow the conventional formalism of
catalytic quantum randomness [19], note that a simple projec-
tive measurement on κ will collapse it into a pure state and
leave the system A in the dephased state without the leftover
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SOR (up to local unitary) and the catalyst in the state �B,
which is the standard form of catalyst [19], deterministically,
regardless of the measurement outcome. This is because both
κA′ and κB′ are completely decoupled from systems A and B,
respectively. In this sense, one can say that the initial catalyst
σ was actually a precatalyst, a compound that is converted
into a catalyst during the chemical reaction, since it produces
the true catalyst �B in the course of interaction.

VI. CONCLUSION

Weak randomness sources with a nonuniform probability
distribution often cause a nonzero probability of failure [33],
sometimes to an irremediable extent [30,31] when their dis-
tribution is not fixed. We showed, however, for a fixed source
of randomness or entanglement, that imperfect resources can
yield deterministic security when their min-entropy is larger
than the size of the secret they are hiding.

Aside from the results on quantum information process-
ing tasks, we showed the power of nonuniform randomness
sources as a catalyst, which could be interpreted as a ther-
mal machine [18] in a quantum thermodynamics context,
when it comes to state transition. By utilizing the Nielsen
theorem [16], which was initially applied to entanglement
extraction, we showed that nonuniform randomness sources

can also serve as a catalyst and provided a necessary and
sufficient condition for when it is possible. A dephasing map
can also be understood as a quantum masking process of
an observable. Our result shows that the randomness cost of
masking one observable is half of the cost of masking all the
quantum information in a system. This result solidifies the
intuition that the information of one observable amounts to
half of the quantum information in the same system.

Anticipated future work is to extend this result for arbitrary
mixed quantum one-time pads. Unlike the results for safe
states and SORs for dephasing maps, the result given in this
work is not fully general for quantum one-time pads since we
only considered pure quantum one-time pads.
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